Practical and Theoretical Considerations in the Design of a System for Managing Peer Feedback on Oral Production

Ralph L. ROSE
<rose@waseda.jp>

Center for English Language Education (CELESE)
Waseda University Faculty of Science and Engineering
Tokyo, Japan
Overview

- Background: Peer feedback
- Peer Feedback Management Schema
 - Structure
 - Design components
- Example: Feedbacker
- Implications
Peer Feedback

• Information given to learner by peers about their performance, intending to help learner sustain or improve performance (hence, formative)

• Benefits
 – Promotes critical thinking (Orsmond, et al. 2000)
 – Encourages higher audience awareness (Yeh, et al. 2008)
 – More informative (Bartels 2003; Tsui and Ng 2000)
 – Complements teacher's feedback (Stefani 1998)

• Implementation
 – Influenced by many factors
 – No comprehensive guide
 • Goal of present work
SIPFS

Schema for the Implementation of Peer Feedback Systems

Input
- Preparation
- Set-up effort
- Cost
- User training

Operation
- Learner effort
- Teacher effort
- Processing effort

Feedback System Design
- Object
- Reviewer anonymity
- Prompt type
- Automation
- Permanence
- Filtering
- Medium
- Prompt nature
- Reflection
- Annotation capability

Output
- Feedback latency
 - Learner uptake
 - Receiver
 - Giver
 - Learner assessment
 - Learner satisfaction

SIPFS: Peer Feedback Management

JACET 2014 - Hiroshima
Object

The actual object that students will observe and provide feedback on

Feedback System Design

- object
 - reviewer anonymity
 - prompt type
 - automation
 - permanence
 - filtering
 - prompt nature
 - reflection
 - annotation capability
 - medium
 - nature

Input
- Preparation
 - set-up effort
 - cost
 - user training
- Operation
 - learner effort
 - teacher effort
 - processing effort

Output
- Feedback latency
- Learner uptake
 - Receiver
 - Giver
 - Learner assessment
 - Learner satisfaction

Written documents or oral performance is typical, but object could be anything (e.g., project work). Directness of reviewer's observation (i.e., looking at document vs. memory of oral presentation) might affect feedback quality.
Medium

The medium through which students will provide peer feedback

Mixed preferences: written feedback (DiGiovanni and Nagaswami 2001) vs. face-to-face (Tuzi 2004). Wide options exist (direct oral feedback, handwritten feedback, written feedback via computer, audio or video feedback via computer) with wide implications for design, preparation and effort.
The nature of the feedback elicited by the prompt (e.g., corrective, evaluative)

Suggestive rather than corrective feedback with justification leads to greater learner uptake (van der Pol et al 2008, Tseng and Tsai 2007, Gielen et al 2010). This can be controlled with focused questions in appropriate prompt format, but may increase learner effort.
Reviewer anonymity

Whether or not students provide feedback to their peers anonymously

Learners feel anonymity is important (Guardado and Shi 2007, Ballantyne et al 2010, Sullivan and Pratt 1996, DiGiovanni and Nagaswami 2001); Learner uptake is higher (Lu and Bol 2007). Anonymity can be controlled through prompt type but may require high preparation.
Annotation capability

Whether the object can be annotated with explicit, located feedback

Contextual feedback leads to greater learner uptake (van der Pol et al 2008). Possibilities depend on object: handwritten docs easy, digital docs more difficult, oral performance most difficult. Advanced systems require much preparation and effort; may increase permanence but decrease anonymity.
The type of prompt used to elicit feedback

Fixed-response prompts require less learner effort, provide useful learner assessment information (cf., Cho and Schunn 2007), but may have less learner uptake. Free response prompts require more learner effort, may have greater learner uptake, but is more difficult to assess.
Reflection

Whether or not the receiver is required to respond to feedback

Conscientious intake of feedback is necessary for learner uptake. Possibilities include feedback receivers rating or critiquing feedback. This interacts with medium and automation and may entail more learner effort. Research is inconclusive on beneficial reflective tasks (cf., Gielen et al 2010).
Permanence

The duration which the explicit feedback is available to learners

The longer the feedback is available to the receiver, the easier it is to reflect and the more it may lead to uptake. Also, the more useful it may be for assessment. Face-to-face feedback is less permanent, but more permanent design may have more preparation effort and cost.
Filtering

Whether the feedback is monitored or filtered before provided to receiver

Constructive, on-topic feedback is best for learner uptake, thus necessitating monitoring/filtering. Feedback might be arranged to form “Feedback sandwiches” (+/-/+; cf. Dohrenweld 2002, Docheff 1990). Monitoring may be necessary for grading. This increases preparation and operation effort.
Automation

The degree to which processing of feedback is handled through automation

A manually managed system either limits the feedback options severely or requires massive effort to operate. An automated system may require massive preparation effort, but is permanent, minimizes latency, assists assessment, and satisfies learners through novelty of high-technology.

Recommended: Wikipedia, “Comparison of content management systems”
Example: Feedbacker (Rose 2009)

Overview: Students take performance notes on classmates' oral presentations; access web site to upload feedback through web form; feedback is collated automatically and anonymously.
Implications

- SIPFS can facilitate planning and implementation of peer feedback systems.
 - Based on learner needs and administrative limitations, Possible architectures can be determined

- Research gaps in SIPSF suggest places for future investigation.
 - Hypothetical relationships between various design components (e.g., object and prompt nature)
References

